8th AP VALVES & Structural Heart

Debate 1

TAVR Will Be a Standard Treatment for All Patients with Aortic Stenosis : How Much Younger?

Duk-Woo Park, MD., PhD. Division of Cardiology, University of Ulsan College of Medicine, Heart Institute, Asan Medical Center, Seoul, Korea

Conflict of Interest Statement

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship Consulting Fees/Honoraria Consulting Fees/Honoraria Consulting Fees/Honoraria <u>Company</u> Edwards LifeSciences Medtronic Inc Boston Scientific

Clinical Trials

Trial Name	STS Score	Age
Inoperable Population		
PARTNER IB Trial (2010)	11.6	83
High Risk Population (>8)		
PARTNER IA Trial (2011)	11.8	84
CoreValve US Pivotal Trial (2014)	7.4	83
Intermediate Risk Population (4-8)		
PARTNER II Trial (2016)	5.8	82
Low Risk Population (<4)		
NOTION Trial (2015)	3.0	79
PARTNER III (2019)	1.9	73
Evolut Low Risk Trial (2019)	1.9	74

Low Risk Patients (Balloon Expandable) PARTNER 3 Trial

	TAVR (N=496)	SAVR (N=454)
Age, years	73.5 ± 5.8	73.6 ± 6.1
STS PROM, %	1.9 ± 0.7	1.9 ± 0.6
Male sex	335 (67.5)	323 (71.1)
Diabetes mellitus	155 (31.2)	137 (30.2)
Serum creatinine >2 mg/dl	1 (0.2)	1 (0.2)
Prior Myocardial infarction	28 (5.7)	26 (5.8)
Prior Stroke	17 (3.4)	23 (5.1)
Peripheral vascular disease	34 (6.9)	33 (7.3)

Mack MJ et al, N Engl J Med 2019

Low Risk Patients (Balloon Expandable) Death, Stroke, or Rehospitalization at 1 Year

Low Risk Patients (Self-expanding) Evolut Low Risk Trial

	TAVR (N=725)	SAVR (N=678)
Age, years	74.1 ± 5.8	73.6 ± 5.9
STS PROM, %	1.9 ± 0.7	1.9 ± 0.7
Male sex	464 (64.0)	449 (66.2)
Diabetes mellitus	228 (31.4)	207 (30.5)
Serum creatinine >2 mg/dl	3 (0.4)	1 (0.2)
Prior Myocardial infarction	48 (6.6)	33 (4.9)
Cerebrovascular disease	74 (10.2)	80 (11.8)
Peripheral vascular disease	54 (7.5)	56 (8.3)

Popma JJ et al, N Engl J Med 2019

Low Risk Patients (Self-Expanding) Death or Disabling Stroke at 24 Months

Primary Endpoint Met TAVR is noninferior to SAVR

TAVR 5.3% SAVR 6.7%

Posterior probability of noninferiority > 0.999

Popma JJ et al, N Engl J Med 2019

All things being equal, less-invasive therapies will always reign supreme!

TAVR in Old Age and Low Risk TAVR Wins!

TAVR in Low-Risk, Octogenarian

FIGURE 1 Time-to-Event Curves for the Primary and Secondary Endpoints in the Propensity Score-Matched Cohort

Cumulative incidence curves for cardiac death (A) and major adverse cardiac events (B). The insets show the same data on an enlarged y-axis. CI = confidence interval; SAVR = surgical aortic valve replacement; TAVR = transcatheter aortic valve replacement.

Park DW, Park SJ, et al. JACC 2019, In-Press

Younger Patients With Low Risk With Long Life Expectancy

Life expectancy may exceed durability in low-risk, younger patients

CardioVascular Research Foundation

Bagur et al. Heart 2017

Life Expectancy of Korean No #1 in the World at 2030

CardioVascular Research Foundation

Vasilis Kontis et al. Lancet 2017;389:1323-35

Inverse Association Between Risk of SVD and Age

J Am Coll Cardiol 2010;55 2413-26

True Story,

The Terminator, Arnold Schwarzenegger, had heart valve surgery on April 16, 1997 at his age of **50 year old.**

Schwarzenegger apparently opted against a mechanical valve, the only permanent solution available at the time of his surgery, but chose a tissue valve because mechanical valve would have sharply limited his physical activity and capacity to exercise.

Medical experts predicted he would require reoperation in the following 3-8 years as his valve would progressively degrade.

Young Patients With Low Risk Surgical Valve Recommendation

California Registry Age-Dependent Hazard of Death with a Biologic Prosthesis compared to Mechanical Prosthesis

Mechanical Valve Better Survival < 55 YO in AV

N Engl J Med 2017;377:1847-57

California Registry

Mechanical Valve Better Survival < 55 YO in Aortic Valve

N Engl J Med 2017;377:1847-57

50-69 Years Old US: New York State Registry

CardioVascular Research Foundation

JAMA. 2014;312(13):1323-1329.

50-69 Years Old New York State Registry Trade-Off

CardioVascular Research Foundation

JAMA. 2014;312(13):1323-1329.

50-69 Years Old Sweden Registry – Conflicting Data

CardioVascular Research Foundation

European Heart Journal (2016) 37, 2658–2667

Why We Should Be More Careful for Younger Age Beyond Valve Degeneration itself?

Valve-in-Valve is Not Risk-Free

Complications	Valve-in-Valve	Conventional TAVR
Elevated post-procedural gradients SAPIEN	+++	- +
Coronary obstruction	+++	> +
Malpositioning	++	+
Vascular complications	++	++
Permanent pacemaker	+	< ++
Paravalvular leak	-	++
Annulus rupture	—	+

Jean-Michel Paradis et al. J Am Coll Cardiol 2015;66:2019–37

Mortality After Aortic ViV

CardioVascular Research Foundation

Dvir D et al. JAMA. 2014;312(2):162-170.

ASAN Medical Center

Bicuspid In Younger Age

Incidence of Bicuspid AV in isolated AVR

584 men and 348 women from USA (Baylor University)

William Roberts, Circulation 2005;111:920-925

Spectrum of BAV Disease

D

Aortic Valve Morphology Diastole Systole Type 1 Type 2 Type 3 Type 4 Type 5

Combined Aortopathy

TAVR for Bicuspid AV is Not Risk-Free

Anatomical Concern

- Annular eccentricity
- Asymmetrical heavy valve calcification
- Unequally-sized leaflets
- Calcified raphe
- Concomitant aortopathy
- Lack of Standardized Annulus Measurement

Procedural Concern

- Elliptical deployment
- Impaired Bioprosthesis Durability
- Residual Aortic Regurgitation
- Annulus Rupture
- Coronary Obstruction
- Aortic Complication

Zhao ZG et al. Nat. Rev. Cardiol 2015;12:123-128

Post TAVR PCI Chance In Younger Age

Common Pathophysiology

Milin AC et al, J Am Heart Assoc. 2014 Sep;5:e001111

ASAN Medical Cente

Post TAVR PCI

	Kerckhoff-Klinik	Segeberg Registry	UK Registry	TAVR-LM Registry
Incidence	35 / 1,000 (<mark>3.5%</mark>)	17 / 296 (<mark>5.7%</mark>)	18 / 2,588 (<mark>0.7%</mark>)	9 / 6,405 (<mark>0.1%</mark>)
ACS Indication	11.4%	37.5%	65%	78%
Time to PCI	233 ± 158 days	17.7 months (range: 1-72)	136 days (range: 1-1092)	368 days (IQR: 204-534)
Type of TAV Implanted			Not Reported	
CoreValve	29%	100%		44%
SAPIEN XT	54%			55%
JenaValve	3%			
Symetis	11%			
Portico	3%			
Procedural Success	74%	95.8 %	Not Reported	100%

¹Blumenstein, et al., *Clin Res Cardiol* 2015; 104:632-39; ²Allali, et al., *Cardiovasc Revasc Med* 2016; epub ahead of print; ³Snow, et al., *Int J Cardiol* 2015; 199:253-60; ⁴Chakravarty, et al., *J Am Coll Cardiol* 2016; 67:951-60

Valve Thrombosis In Younger Age

TAVR ~13%SAVR ~5%Valve Thrombosis and Stroke

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Possible Subclinical Leaflet Thrombosis in Bioprosthetic Aortic Valves

R.R. Makkar, G. Fontana, H. Jilaihawi, T. Chakravarty, K.F. Kofoed, O. De Backer, F.M. Asch, C.E. Ruiz, N.T. Olsen, A. Trento, J. Friedman, D. Berman, W. Cheng, M. Kashif, V. Jelnin, C.A. Kliger, H. Guo, A.D. Pichard, N.J. Weissman, S. Kapadia, E. Manasse, D.L. Bhatt, M.B. Leon, and L. Søndergaard

ABSTRACT

Warfarinization

Capodanno, et al., presented at London Valves 2017

CardioVascular Research Foundatio

Silent Stroke In Younger Age

Stroke Will Be a Major Concern in Young Patients

Silent Embolic Events on DW-MRI after TAVR

- Affect 58-100% of patients
- Multiple infarcts (≤36, x̄ = 4.6)
- Associated with:
 - Neurocognitive decline
 - >2 fold risk of dementia
 - >3 fold risk of stroke

Restrepo et al. Stroke 2002;33:2909, Lund et al. Eur Heart J. 2005;26:1269, Schwarz et al. Am Heart J 2011;162:756, Knipp et al. Ann Thorac Surg 2008;85:872, Vermeer et al. NEJM 2003; 348:1215, Vermeer et al. Stroke 2003; 34:1126, Arnold et al. JACC Cardiovasc Interv. 2010;3:1126, Astarci et al. J Heart Valve Dis. 2013;22:79, Fairbairn et al. Heart 2012;98:18, Ghanem et al. EuroIntervention. 2013;8:1296, Kahlert et al. Circ. 2010;121:870, Knipp et al. Interact Cardiovasc Thorac Surg. 2013;16:116, Linke et al. TCT 2014, Dedas Charac Surg. 2013;16:116, Linke et al. TCT 2014,

Stroke Will Be a Major Concern in Young Patients

Captured by embolic protection devices in 80-85% TAVI patients

Permanent Pacemaker In Younger Age

Clinical Impact of PPM after TAVR No Impact of Mortality

	PPI followin	PPI following TAVR No PPI following TAVR		Risk Ratio		Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Houthuizen, et al. 2012	20	118	140	679	12.3%	0.82 [0.54, 1.26]	
D'Ancona, et al. 2011	3	20	51	302	1.9%	0.89 [0.30, 2.60]	
Urena, et al. 2014	46	239	272	1317	24.9%	0.93 [0.70, 1.23]	
Mouillet, et al. 2015	41	252	98	581	17.6%	0.96 [0.69, 1.35]	
Biner, et al. 2014	6	58	18	172	2.7%	0.99 [0.41, 2.37]	
De Carlo, et al. 2012	6	44	16	125	2.5%	1.07 [0.44, 2.55]	a
Pereira, et al. 2013	5	19	9	37	1.8%	1.08 [0.42, 2.78]	· · · · · · · · · · · · · · · · · · ·
Buellesfield, et al. 2012	19	98	37	207	7.1%	1.08 [0.66, 1.79]	
Kawaguchi, et al. 2015	10	28	40	132	4.2%	1.18 [0.67, 2.06]	
Nazif, et al. 2015	45	173	374	1800	19.5%	1.25 [0.96, 1.64]	+-
Schymik, et al. 2015	13	69	85	565	5.5%	1.25 [0.74, 2.12]	
Total (95% CI)		1118		5917	100.0%	1.03 [0.90, 1.18]	
Total events	214		1140				

Rigueiro, A, et al. Circ Cardiovas Interv 2016;9:e003635

Clinical Impact of PPM after TAVR Small But Significant Complications

Palmisano P, et al., Europace. 2013 Apr;15(4):531-40.

TAVR in Low-Risk, Younger Age 30 Year Life Expectancy and Long Journey for TAVR Valve

Procedural and Residual Risk in Young Patients

- Reintervention: ~ 20% at 15-20 years
- High Incidence of Bicuspid AS: 60%
- Risk of PCI after TAVR: feasible but not 100% success
- Risk of valve thrombosis and Stroke: Undetermined anticoagulation strategy
- Pacemaker implantation risk: : ~ 10-15%
- Long term effect of >mild PVL

Summary – TAVR in Low Risk How Much Younger?

- On the basis of chain of RCTs, TAVR become the standard procedure in low-risk patients with severe AS.
- Heat-team should be the mandatory decision-maker.
 - > Age >75: Consider TAVR as the default treatment.
 - Age 70-75: Consider TAVR first if patient want less invasive procedure.
 - Age 65-70: balanced think in the heart-team and patient's want.
 - Age <65: still SAVR before long-term (>10 years) patency of TAVR is guaranteed.

